Fast Inference for Vision-Language Model Image Captioning

Andrew Shi
Stanford University

acshi@stanford.edu

Abstract

Autoregressive vision-language models for image cap-
tioning suffer from slow inference due to sequential to-
ken generation. We address this bottleneck by adapt-
ing the Medusa framework to image captioning, introduc-
ing speculative decoding heads to a ViT-GPT2 encoder-
decoder architecture. Our approach augments a pre-
trained VisionEncoderDecoderModel (nlpconnect/vit-gpt2-
image-captioning) with K lightweight Medusa heads, each
predicting tokens k + 1 steps into the future. We explore two
training strategies: Medusa-1 freezes the 240M parameter
backbone and trains only the Medusa heads, while Medusa-
2 jointly fine-tunes all parameters. On Flickr8k, Medusa-1
with 4 heads achieves comparable validation loss to base-
line (2.42 vs 2.51) while accelerating inference by 2.98x
(77.6 vs 26.1 samples/s). Medusa-2 further improves qual-
ity (2.28 loss) while maintaining similar speedup (78.7 sam-
ples/s). Our results demonstrate that speculative decoding
can effectively accelerate vision-language generation with-
out sacrificing caption quality.

1. Introduction

Image captioning—the task of generating descriptive
text for visual input—has wide-ranging applications, from
assisting visually impaired users to indexing massive photo
collections and enabling human—robot interaction. Recent
advances in vision-language models, particularly those that
pair a Vision Transformer (ViT) encoder with an autoregres-
sive Transformer decoder, have achieved impressive accu-
racy on many benchmarks. However, their reliance on se-
quential token generation leads to slow inference, requiring
one full forward pass through the decoder per token.

In many practical settings, such as live video captioning,
mobile applications, or large-scale image indexing, reduc-
ing this decoding time is critical. The computational bottle-
neck arises from the autoregressive nature of the decoding
process: each token must be generated sequentially, pre-
venting parallelization across the sequence dimension dur-
ing inference.

Taeuk Kang
Stanford University

taeuk@stanford.edu

Nash Brown
Stanford University

ncbrown@stanford.edu

The input to our algorithm is a single RGB image of ar-
bitrary resolution, which we preprocess to 224x224 pixels
to match ViT requirements. We then use a ViT encoder
coupled with a GPT-2 decoder augmented with multiple
lightweight Medusa heads to output a predicted natural lan-
guage caption describing the image content. Specifically,
our architecture processes the input image through a pre-
trained ViT-base-patch16-224 encoder to extract visual fea-
tures, which are then fed to a GPT-2 decoder enhanced with
K additional Medusa heads. Each Medusa head k is de-
signed to predict the token at position ¢ + k£ + 1 in the cap-
tion sequence, enabling speculative multi-token generation.
The final output is a variable-length text sequence (typically
10-20 tokens) providing a descriptive caption of the input
image.

Our core technical contribution lies in adapting the
Medusa speculative decoding framework to the vision-
language domain. While the original Medusa work fo-
cused on pure language modeling tasks, we address the
unique challenges of cross-modal generation where visual
features must be effectively integrated with textual pre-
dictions across multiple future positions. This adapta-
tion requires careful consideration of how visual context
propagates through the decoder layers and influences each
Medusa head’s predictions.

We address this challenge by adapting the Medusa
framework [1] to vision-language tasks. Medusa intro-
duces speculative decoding by training multiple lightweight
“heads” that predict future tokens in parallel, potentially al-
lowing multiple tokens to be generated in fewer forward
passes. We implement and compare two training strate-
gies: backbone-frozen (Medusa-1) and joint fine-tuning
(Medusa-2). We demonstrate 2.98x inference speedup on
Flickr8k while maintaining or improving caption quality.
We also provide empirical analysis of the trade-offs be-
tween number of heads, model performance, and inference
speed.

2. Related Work

We organize related work into three categories: (1)
vision-language captioning architectures, (2) speculative or

multi-token decoding, and (3) efficient generation tech-
niques.

Vision-Language Models. Modern image caption-
ing approaches predominantly adopt an encoder-decoder
paradigm, where a visual encoder (e.g., a CNN or Vision
Transformer) first extracts a compact representation of the
image, and then an autoregressive text decoder generates a
caption based on those features. Early methods like Show
and Tell [12] combined a CNN encoder with an LSTM de-
coder, demonstrating that end-to-end training yields better
captions than rule-based systems. However, CNN-LSTM
models often produce repetitive or overly generic descrip-
tions and can struggle to scale to large datasets without sub-
stantial tuning. More recently, Transformer-based architec-
tures have become dominant. Dosovitskiy et al. [4] showed
that splitting an image into patches and feeding them into
a Vision Transformer (ViT) produces strong visual embed-
dings, but at the cost of higher compute compared to CNNs.
Building on this idea, Kumar [6] illustrates how a ViT en-
coder can directly connect to a GPT-style decoder, yield-
ing fluent captions that generalize better than earlier LSTM-
based pipelines. Large-scale pretraining efforts such as VL-
BERT [1] and BLIP [7] learn joint representations by com-
bining image and text data, further boosting caption qual-
ity on benchmarks. While these large pretrained models
achieve state-of-the-art accuracy, they still generate one to-
ken at a time. Our work builds on the VisionEncoderDeco-
derModel framework from Hugging Face—specifically us-
ing a ViT encoder with a GPT-2 decoder—and focuses on
reducing inference time.

Speculative Decoding. Speculative decoding methods
seek to overcome the “one token per forward pass” bottle-
neck of autoregressive generation by proposing multiple fu-
ture tokens in parallel and then verifying them. Stern et
al. [10] introduced blockwise parallel decoding: a model
generates a short block of tokens and then checks them se-
quentially, reducing the total number of passes but still re-
quiring repeated verification of each token in order. Xia
et al. [13] proposed a more general speculative decoding
framework for sequence-to-sequence models, where a small
“draft” model proposes candidate tokens that a larger “ver-
ification” model confirms in fewer passes. While this two-
model setup can achieve significant speedups, it introduces
the overhead of maintaining and training a separate draft
network. More recently, Chen et al. [2] presented specula-
tive sampling, which similarly leverages a lightweight draft
model to accelerate inference for large language models.
These approaches are clever in reducing decoding rounds,
but they often sacrifice some fluency or require careful bal-
ancing between draft and verification models. Cai et al. [1]
introduced Medusa, a framework that adds multiple paral-
lel decoding heads to a single large model. Each head k
predicts the token at position ¢ + (k + 1) directly from the

current hidden state, and a tree-based attention mechanism
verifies these multi-step predictions together, which can cut
the number of full decoder passes. Medusa’s multi-head
speculation is particularly practical because it retains a sin-
gle decoder backbone and only requires a specialized veri-
fication step.

Efficient Vision-Language Generation. Beyond spec-
ulative decoding, various lines of research aim to make
vision-language models smaller, faster, or more resource-
efficient. Knowledge distillation techniques, such as those
explored by Fang et al. [5], train a compact student model
to mimic a larger teacher, preserving much of the original
performance in a smaller footprint. While distillation can
yield smaller models, it requires a large teacher network
and additional training iterations. Quantization methods,
such as Q8BERT [14], reduce numerical precision during
inference, which can speed up computations on specialized
hardware with negligible accuracy loss, but may degrade
fine-grained visual reasoning. PaLl [3] demonstrates that
jointly scaling model size and dataset size can improve both
throughput and accuracy in multilingual vision-language
tasks. However, massive scaling demands substantial com-
pute resources. Other works explore lightweight adaptation
layers (e.g., adapters or LoRA) to fine-tune only a small
subset of parameters, reducing the inference footprint but
still requiring architectural modifications. In contrast, our
approach keeps the original ViT + GPT-2 architecture intact
and simply attaches lightweight Medusa heads alongside
the decoder, enabling multi-token proposals and inference
time speedup without additional compression or quantiza-
tion steps.

3. Data

We evaluate on the Flickr8k dataset, a standard bench-
mark for image captioning containing 8,000 images, each
paired with five human-written captions. The dataset pro-
vides diverse descriptions that capture entities, actions, and
spatial relationships in natural scenes, making it an ideal
testbed for evaluating both caption quality and generation
speed. The images span a wide range of scenarios, from in-
door and outdoor scenes to various human activities and ani-
mal behaviors, ensuring our evaluation captures the model’s
ability to handle diverse visual content.

The five captions for the example image demonstrate
the variation in descriptions: {”A black dog and
a spotted dog are fighting.”, A black
dog and a spotted dog are fighting.”,

"A black dog and a white dog with brown
spots are staring at each other in the
street.”, "Two dogs of different breeds
looking at each other on the road.”, "Two
dogs on pavement moving toward each
other.”}. This variation highlights the challenge of cap-

Figure 1. Example image from Flickr8k dataset showing two dogs
facing each other on pavement.

tion generation, as there are multiple valid ways to describe
the same visual scene, ranging from detailed descriptions
of specific features to more general observations about the
overall scene.

Our experimental setup uses an 80/20 train-test split, re-
sulting in 6,400 training images and 1,600 test images. This
split ensures sufficient training data while maintaining a
robust evaluation set for measuring generalization perfor-
mance. With five captions per image, the training set pro-
vides 32,000 image-caption pairs, while the test set con-
tains 8,000 pairs. During training, we implement a random
caption selection strategy where one of the five available
captions is randomly chosen for each image in each epoch,
introducing variability that improves model generalization
across different linguistic expressions of the same visual
content.

The dataset’s caption diversity is particularly valuable
for training robust models. Each image’s five captions typi-
cally exhibit different levels of detail, focus on different as-
pects of the scene, and use varied vocabulary and sentence
structures. This natural variation helps the model learn that
multiple valid descriptions exist for any given image, en-
couraging the development of more flexible and creative
caption generation capabilities.

Preprocessing. Our image preprocessing pipeline is de-
signed to ensure compatibility with the pretrained ViT en-
coder while maintaining visual fidelity necessary for accu-
rate caption generation. All images undergo a standard-
ized transformation sequence implemented using PyTorch’s
transforms module [9]. The preprocessing begins with re-
sizing all images to 224x224 pixels, which matches the in-
put requirements of the ViT-base-patch16-224 architecture.
This resizing maintains aspect ratio consistency while en-
suring uniform input dimensions across the dataset.

Following resizing, images are converted to RGB for-
mat to ensure consistent color channel representation. The
pixel values are then normalized using ImageNet statistics
with mean values of [0.485,0.456, 0.406] and standard de-

viations of [0.229, 0.224, 0.225] for the red, green, and blue
channels respectively. This normalization aligns with the
pretraining distribution of the ViT encoder, ensuring opti-
mal performance from the pretrained weights and prevent-
ing distribution shift between pretraining and fine-tuning
phases. This preprocessing ensures compatibility with the
pretrained ViT encoder while maintaining the visual fidelity
necessary for accurate caption generation.

Caption preprocessing employs the GPT-2 tokenizer,
which uses byte-pair encoding (BPE) to handle the full vo-
cabulary of 50,257 tokens. Each caption is tokenized with a
maximum length constraint of 50 tokens, which accommo-
dates the vast majority of captions in the Flickr8k dataset
while maintaining computational efficiency. The tokenizer
applies padding to the right side of sequences to ensure uni-
form length across batches, with padding tokens receiving
special attention mask values to exclude them from loss
computation. During training, we randomly sample one
caption per image to introduce variability and improve gen-
eralization across different caption styles and vocabulary
choices.

To maximize training efficiency and reduce computa-
tional overhead, we preprocess all images and cache the
results as PyTorch tensor files (.pt format), eliminating the
need for repeated image decoding and transformation dur-
ing training. This preprocessing step converts images to ten-
sors with shape [3, 224, 224] and applies all normalization.

4. Methods
4.1. Model

We use a pretrained backbone model that comprises of
a Vision Transformer (ViT) encoder and a GPT-2 decoder.
This allows us to build upon a capable yet lightweight
model with learned weights for vision-language tasks. For
the backbone model’s encoder, it uses Google’s vit-base-
patch16-224-in21k model as the encoder, which is a ViT
trained on 14 million ImageNet examples and outputs a
probability distribution over 21,843 classes at resolution
224 x 224. The model is then fine-tuned on 1 million more
ImageNet examples and outputs a probability distribution
over 10,000 classes. For the backbone model’s decoder,
it uses GPT-2 as a lightweight language model that gener-
ates captions autoregressively based on the image features
from the ViT encoder. The decoder uses both masked multi-
head self-attention for the caption sequence and multi-head
cross-attention to access the keys and values from the final
hidden states of the ViT encoder. The backbone model con-
sists of around 240M parameters.

4.2. Medusa Heads

The key innovation in our project is the integration of
Medusa heads into the decoder architecture. Each Medusa

head is a lightweight feed-forward network designed to pre-
dict future tokens based on current decoder hidden states.
The architecture consists of a first linear layer (fc1) that
maps from 768 to 768 dimensions with SiL.U activation,
followed by a residual connection where the output is com-
puted as SiLU(fcl (input)) + input. Finally, a
second linear layer (fc2) maps from 768 to 50,257 di-
mensions to produce vocabulary predictions. This is done
by copying weights from the main LM head of the pre-
trained GPT-2 decoder. This provides a strong initializa-
tion, as the heads start with the ability to generate reason-
able next-token predictions. The first layer (£fc1) uses stan-
dard Kaiming initialization. This initialization scheme and
Medusa head architecture closely resembles the method de-
scribed in [1].

The Medusa heads are implemented as
nn.ModuleList containing K lightweight heads,
each with identical architecture but independent param-
eters. Critical to proper functioning is the initialization
strategy: fc2 layers are initialized by copying weights
and biases from the pretrained GPT-2 language modeling
head, ensuring each Medusa head starts with the ability to
generate reasonable token predictions. The fcl layers use
normal initialization with standard deviation 0.02 and zero
bias initialization for stable training dynamics.

During the forward pass of the Medusa head enhanced
image captioning model, the standard encoder-decoder pass
is first performed. Then, the hidden states from the de-
coder (after its last layer normalization) are retrieved. These
hidden states are then passed through each of the Medusa
heads in parallel to produce different logits at each head.
Each Medusa head is trained to predict tokens in the future
without seeing the intermediate ground truth tokens, where
Medusa head £ predicts token k + 1 steps into the future.

At inference time, the base LM head and the Medusa
heads propose a tree of candidate token sequences, and
these candidates are verified in parallel using a mechanism
similar to tree attention. The longest accepted candidate se-
quence is appended to the current generation, allowing mul-
tiple tokens to be decoded in fewer forward passes than the
standard autoregressive next-token prediction mechanism.
We also set a flag to allow the model to greedily decode
the top-1 token from the base model’s prediction for each
Medusa head.

4.3. Training Setup

For the non-Medusa head architecture, we use the stan-
dard cross-entropy loss to calculate the loss for each mini-
batch and update the model parameters. The loss function
is given by

N
1
LBAsE = N ZIOgPt,i(yi,t+l)a (D
i=1

where N is the mini-batch size.

For the Medusa head model, we use two training meth-
ods, following the methods discussed in [1]. For the first
method, we freeze the backbone of the base model (ViT
and GPT-2 decoder) and only train the parameters of the
Medusa heads. In this setting, we use a revised training ob-
jective where the total loss is a sum of the cross-entropy
losses for each Medusa head’s predictions. The loss func-
tion for the Medusa head model is given by

N K
1
Lyepusa-1 = N E E Ak logpﬁﬁ)(yi,t+k+1), 2
i=1 k=1

where K is the number of Medusa heads and \;, = r* for
some decay constant r (e.g., 7 = 0.8).

In the second method, we perform a full fine-tune on
the base model where the backbone and the Medusa heads
are both trained. In this setting, the loss is calculated as a
sum of the standard cross-entropy loss from the base GPT-2
model’s LM head and the multi-token prediction from the
Medusa heads. Namely, the loss function for the second
method is given by

N K—1

k
Z[logpt,i(yi,t+l) + > g 10gp£7¢>(’9i,t+k+1>}’ (&)
b=

1
LMEDUSA2 = —
N =1 0

where «ay, are the non-negative weights such that), a;, =
1, p¢,; is the baseline head’s probability distribution for sam-

ple ¢ at timestep ¢, and pg? is the k-th Medusa head’s dis-
tribution for the same sample. We use a cosine anneal-
ing learning rate scheduler to adjust the learning rate over
epochs. We also use gradient clipping to stabilize training
where the maximum norm is 1.0 to prevent exploding gradi-
ents. We selected AdamW as our optimizer due to its supe-
rior performance on transformer-based models, with weight
decay set to 0.01 to prevent overfitting.

The Medusa loss implementation includes several criti-
cal technical details for training stability. Label shifting is
carefully handled such that Medusa head k’s logits at posi-
tion t predict labels at position t+k+1, ensuring proper tem-
poral alignment. We apply attention masking to exclude
padding tokens (marked with -100) from loss computation,
preventing the model from learning spurious patterns from
padding. The loss function incorporates extensive numer-
ical stability checks, filtering out non-finite losses and im-
plementing proper loss averaging to prevent gradient explo-
sions. For Medusa-2 training, we use different parameter
groups with the AdamW optimizer: Medusa heads receive
the full learning rate while backbone parameters use a 10x
smaller learning rate to preserve pretrained knowledge.

The training loop implements robust error handling and
monitoring. Validation is performed every 50 training steps
to track model performance, with best model checkpoint-
ing based on validation loss. We implement gradient clip-
ping with maximum norm 1.0 and include extensive logging

through Weights & Biases for experiment tracking. The
data loading strategy randomly selects one caption per im-
age during each epoch, introducing beneficial training vari-
ability across the multiple available captions per image.

4.4. Training Hyperparameters

Our hyperparameter choices were motivated by balanc-
ing training stability, computational efficiency, and model
performance. For Medusa-1, we used a learning rate of 2e-
3 for the Medusa heads, chosen to allow rapid adaptation of
the lightweight heads while preserving the pretrained back-
bone knowledge. We set the lambda weights for the Medusa
heads to 0.85%!, For Medusa-2, we employed a two-tier
learning rate strategy: 2e-3 for Medusa heads and 2e-4 for
backbone parameters, with the 10x ratio ensuring that pre-
trained features are fine-tuned gradually while allowing ag-
gressive optimization of the new Medusa components. The
batch size of 16 was constrained by our T4 GPU memory
limitations while providing sufficient gradient stability. We
implemented cosine annealing learning rate scheduling over
5 epochs, with gradient clipping at maximum norm 1.0 to
prevent exploding gradients common in multi-head training
scenarios. Training for 5 epochs provided sufficient conver-
gence based on validation loss plateauing, while remaining
computationally feasible for our resource constraints.

4.5. Evaluation

For evaluation, we run a forward pass of our model on
the test set both at intervals during training and after the
final model weights have been saved. We test for two met-
rics. First, we evaluate the loss that the models achieve on
the test set and then evaluate the inference speed (measured
in samples/seconds and tokens/second). A key characteris-
tic of Medusa heads is that the performance of the model
should not degrade due to the multi-token prediction mech-
anism. Thus, we expect that the loss on the test set using
the Medusa-1 strategy remains comparable to the baseline
backbone model and the loss for the Medusa-2 strategy to
be lower than both the baseline backbone model and the
Medusa-1 model since it performs a full fine-tune over the
model weights.

For inference speed evaluation, we measure both sam-
ples per second and tokens per second over 100 batches
from the validation set with a batch size of 16. This evalu-
ation setup provides sufficient statistical power while main-
taining reasonable computational cost. We compare the
baseline model using standard autoregressive generation
against our Medusa-enhanced models using their respective
generation procedures. All timing measurements exclude
data loading and preprocessing time to focus specifically on
the model inference characteristics.

5. Experiments
5.1. Model Performance

First, we examine the performance of the trained models
measured in cross-entropy loss. Figure 2 shows the train-
ing loss over batches, Figure 3 shows the training loss over
epochs, and Figure 4 shows the validation loss at intervals
of 50 iterations. We see that the curves look reasonable
and well-behaved. We note that the validation loss shows
a steady decrease across all 5 epochs; however, evaluat-
ing the shapes, we suggest that one can experiment with
a higher learning rate to achieve better performance in the
same number of epochs. There are two main observations
from the loss curves. First, training with more Medusa
heads improves model performance, as we observe a mono-
tonic decrease in the validation loss curves as we increase
the number of Medusa heads. Second, keeping the num-
ber of Medusa heads constant, performing a full fine-tune
over all parameters allows the model to achieve better per-
formance.

train/loss_epoch

— medusal-2heads-5epochs
medusa2-4heads-5epochs = medusal-4heads-5epochs

medusal-6heads-5epochs

= medusal-8heads-5epochs

Figure 2. Training loss for different models over 5 epochs.

train/loss_batch

— medusal-2heads-5epochs
medusa2-4heads-5epochs = medusal-4heads-5epochs

redusal-6heads-5epochs

= medusal-8heads-5epochs

Figure 3. Training loss for different models over every minibatch.

To explain the first observation, increasing the number
of Medusa heads may allow the model to gain a richer loss
signal and may encourage the model to plan ahead when
predicting future tokens for the caption. Furthermore, with
an increased number of parameters due to the linear layers

val/loss

medusal-6h
medusal-8h

— medusal-2heads-5epochs
medusa2-4heads-5epochs = medusal-4heads-5epochs

500 1k

Figure 4. Validation loss for different models over 5 epochs, mea-
sured every 50 steps.

in each Medusa head, the model may have greater capacity
to learn. The second observation is expected and intuitive;
a full fine-tune over the model parameters is more effective
as we tune the weights for our specific downstream task of
interest.

After training the models and saving the checkpoints, we
run a single forward pass on the 1,600 samples from the val-
idation set and measure the cross-entropy loss. The results
are shown in Table 1. We see that the performance of the
Medusa-1 model is close to the baseline pretrained model,
and the performance of the Medusa-2 model is better on the
downstream task.

Model # Medusa Heads | Validation Loss
Baseline 1 2.51
Medusa-1 2 2.52
Medusa-1 4 2.42
Medusa-2 2 2.37
Medusa-2 4 2.28

Table 1. Final validation loss for different models.

Our results reveal several important insights about ap-
plying Medusa to vision-language tasks. First, increasing
the number of Medusa heads consistently improves vali-
dation loss, suggesting that multi-step prediction provides
a richer training signal that encourages better planning in
caption generation. The monotonic improvement from 2 to
4 heads indicates that the model benefits from longer pre-
diction horizons, though computational constraints limited
our exploration beyond 4 heads for Medusa-2.

Second, the comparison between Medusa-1 and Medusa-
2 demonstrates different trade-offs for practical deploy-
ment. Medusa-1 offers the advantage of preserving the
pretrained backbone entirely while achieving substantial
speedup, making it ideal for scenarios where model stability
and minimal training overhead are priorities. Medusa-2 pro-
vides superior generation quality through joint optimization
but requires more computational resources during training.

6. Conclusion

We adapted the Medusa speculative decoding frame-
work to vision-language image captioning, achieving sig-
nificant inference acceleration without sacrificing caption
quality. Our comprehensive evaluation demonstrates the
effectiveness of this approach across multiple dimensions:
the Medusa-1 strategy achieves competitive performance
(2.42 vs 2.51 baseline loss) with 2.98x inference accelera-
tion while requiring training of only the lightweight Medusa
heads rather than the full model, making it highly prac-
tical for resource-constrained deployment scenarios. The
Medusa-2 approach further improves caption quality to
2.28 loss while maintaining similar speedup characteristics,
demonstrating the benefits of joint optimization when com-
putational resources permit full fine-tuning.

Future work should explore several promising directions
to enhance both the effectiveness and practical applicabil-
ity of Medusa-based vision-language generation. The most
immediate technical improvement involves implementing
the complete tree-based verification mechanism described
in the original Medusa work, which would unlock the full
potential of multi-token acceptance and potentially achieve
even greater speedup than our current simplified verification
approach. Data augmentation represents another impor-
tant avenue for improvement, as our current preprocessing
pipeline deliberately avoids augmentation techniques such
as random cropping, horizontal flipping, color jittering, and
modern strategies like MixUp or CutMix that could signifi-
cantly enhance model robustness and generalization across
diverse visual conditions. Additionally, scaling experiments
to larger vision-language models such as BLIP-2 or LLaVA
would provide insights into how the Medusa framework
scales with model size, while compression techniques like
knowledge distillation or quantization could make the ap-
proach more suitable for mobile deployment scenarios.

Evaluation extensions are crucial for validating the
broader applicability of the approach, including scaling to
larger datasets like COCO Captions and incorporating more
sophisticated caption quality metrics such as BLEU, CIDEtr,
and human evaluation studies that better capture seman-
tic similarity and user preferences than cross-entropy loss
alone. Cross-domain evaluation on datasets with differ-
ent visual characteristics, such as medical images or art-
work, would demonstrate generalizability beyond natural
scene photography, while training methodology improve-
ments like curriculum learning could further enhance both
efficiency and performance.

The demonstrated success of Medusa for image caption-
ing opens promising opportunities for accelerating other
vision-language tasks, including visual question answering
and image-text retrieval, where inference speed is equally
critical for practical deployment. As vision-language mod-
els continue to grow in size and complexity, speculative de-

coding approaches like Medusa will become increasingly
important for making these powerful models practical for
real-time applications.

7. Contributions and Acknowledgements

Andrew Shi worked on setting up the model architec-
ture, experimentation, and training. Nash Brown worked on
hyperparameter tuning, performance tuning, and data eval-
uations. Taeuk Kang worked on the training infrastructure
and GPU and preprocessing the data. We thank our project
mentor, Sabri Eyuboglu, for their continued guidance and
support throughout the quarter. We acknowledge [8] for the
base model and code. We acknowledge Amazon Web Ser-
vices for providing credits to train and run experiments.

References

[1] T. Cai, Y. Li, Z. Geng, H. Peng, J. D. Lee, D. Chen, and
T. Dao. Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads, 2024. 1, 2, 4

[2] C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and
J. Jumper. Accelerating large language model decoding with
speculative sampling, 2023. 2

[3] X. Chen, X. Wang, S. Changpinyo, A. Piergiovanni,
P. Padlewski, D. Salz, S. Goodman, A. Grycner, B. Mustafa,
L. Beyer, A. Kolesnikov, J. Puigcerver, N. Ding, K. Rong,
H. Akbari, G. Mishra, L. Xue, A. Thapliyal, J. Bradbury,
W. Kuo, M. Seyedhosseini, C. Jia, B. K. Ayan, C. Riquelme,
A. Steiner, A. Angelova, X. Zhai, N. Houlsby, and R. Sori-
cut. Pali: A jointly-scaled multilingual language-image
model, 2023. 2

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale, 2021. 2

[5] Z. Fang, J. Wang, X. Hu, L. Wang, Y. Yang, and Z. Liu.
Compressing visual-linguistic model via knowledge distilla-
tion, 2021. 2

[6] A.Kumar. The illustrated image captioning using transform-
ers. ankur3107.github.io, 2022. 2

[7]1 J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping
language-image pre-training for unified vision-language un-
derstanding and generation, 2022. 2

[8] NLP Connect. vit-gpt2-image-captioning (revision
0e334c7), 2022. 7

[9] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019. 3

[10] M. Stern, N. Shazeer, and J. Uszkoreit. Blockwise parallel
decoding for deep autoregressive models, 2018. 2

[11] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai.
Vl-bert: Pre-training of generic visual-linguistic representa-
tions, 2020. 2

[12] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and
tell: A neural image caption generator, 2015. 2

[13] H. Xia, T. Ge, P. Wang, S.-Q. Chen, F. Wei, and Z. Sui. Spec-
ulative decoding: Exploiting speculative execution for accel-
erating seq2seq generation, 2022. 2

[14] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat. Q8bert:
Quantized 8bit bert. In 2019 Fifth Workshop on Energy Effi-
cient Machine Learning and Cognitive Computing - NeurIPS
Edition (EMC2-NIPS), page 36-39. IEEE, Dec. 2019. 2

